Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Adding shape distingushing to the engine cache #3154

Closed
wants to merge 1 commit into from

Conversation

narendasan
Copy link
Collaborator

Description

Adds distingushing base on shape and compile settings to the engine cache

Fixes #3148

Type of change

Please delete options that are not relevant and/or add your own.

  • Bug fix (non-breaking change which fixes an issue)

Checklist:

  • My code follows the style guidelines of this project (You can use the linters)
  • I have performed a self-review of my own code
  • I have commented my code, particularly in hard-to-understand areas and hacks
  • I have made corresponding changes to the documentation
  • I have added tests to verify my fix or my feature
  • New and existing unit tests pass locally with my changes
  • I have added the relevant labels to my PR in so that relevant reviewers are notified

@github-actions github-actions bot added component: tests Issues re: Tests component: conversion Issues re: Conversion stage component: api [Python] Issues re: Python API component: runtime component: dynamo Issues relating to the `torch.compile` or `torch._dynamo.export` paths labels Sep 11, 2024
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_settings.py	2024-09-11 04:38:03.076285+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_settings.py	2024-09-11 04:38:21.932007+00:00
@@ -112,28 +112,31 @@
    lazy_engine_init: bool = LAZY_ENGINE_INIT
    cache_built_engines: bool = CACHE_BUILT_ENGINES
    reuse_cached_engines: bool = REUSE_CACHED_ENGINES


-_SETTINGS_TO_BE_ENGINE_INVARIANT =(
+_SETTINGS_TO_BE_ENGINE_INVARIANT = (
    "enabled_precisions",
    "max_aux_streams",
    "version_compatible",
    "optimization_level",
    "disable_tf32",
    "sparse_weights",
    "make_refittable",
    "engine_capability",
-    "hardware_compatible",)
+    "hardware_compatible",
+)


-def settings_are_compatible(set_a: CompilationSettings, set_b: CompilationSettings) -> Tuple[bool, Set[str]]:
+def settings_are_compatible(
+    set_a: CompilationSettings, set_b: CompilationSettings
+) -> Tuple[bool, Set[str]]:
    incompatible_settings: Set[str] = set()

    for field in _SETTINGS_TO_BE_ENGINE_INVARIANT:
-       if getattr(set_a, field) != getattr(set_b, field):
-           incompatible_settings.add(field)
+        if getattr(set_a, field) != getattr(set_b, field):
+            incompatible_settings.add(field)

    if len(incompatible_settings) == 0:
        return True, set()
    else:
        return False, incompatible_settings
--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_engine_cache.py	2024-09-11 04:38:03.076285+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_engine_cache.py	2024-09-11 04:38:21.950622+00:00
@@ -12,16 +12,27 @@

from sympy.polys.matrices.dense import Sequence
import torch
from torch._inductor.codecache import FxGraphCachePickler, sha256_hash
from torch.fx.experimental.proxy_tensor import unset_fake_temporarily
-from torch_tensorrt.dynamo._settings import CompilationSettings, _SETTINGS_TO_BE_ENGINE_INVARIANT
+from torch_tensorrt.dynamo._settings import (
+    CompilationSettings,
+    _SETTINGS_TO_BE_ENGINE_INVARIANT,
+)
from torch_tensorrt._Input import Input

_LOGGER: logging.Logger = logging.getLogger(__name__)

-UnpackedCacheHit = Tuple[bytes, List[str], List[str], Tuple[Input], CompilationSettings, Optional[Dict[Any, Any]]]
+UnpackedCacheHit = Tuple[
+    bytes,
+    List[str],
+    List[str],
+    Tuple[Input],
+    CompilationSettings,
+    Optional[Dict[Any, Any]],
+]
+

class BaseEngineCache(ABC):

    @abstractmethod
    def __init__(
@@ -30,11 +41,15 @@
        **kwargs: Any,
    ) -> None:
        pass

    @staticmethod
-    def get_hash(gm: torch.fx.GraphModule, input_specs: Sequence[Input], settings: CompilationSettings) -> str:
+    def get_hash(
+        gm: torch.fx.GraphModule,
+        input_specs: Sequence[Input],
+        settings: CompilationSettings,
+    ) -> str:
        """Get the hash value of the GraphModule

        Args:
            gm (torch.fx.GraphModule): GraphModule to hash

@@ -53,11 +68,13 @@
        with io.BytesIO() as stream:
            input_specs_data = pickle.dumps(input_spec_strs)
            input_specs_data = pickletools.optimize(input_specs_data)
        input_specs_hash = sha256_hash(input_specs_data)

-        invariant_engine_specs = [str(getattr(settings, field)) for field in _SETTINGS_TO_BE_ENGINE_INVARIANT]
+        invariant_engine_specs = [
+            str(getattr(settings, field)) for field in _SETTINGS_TO_BE_ENGINE_INVARIANT
+        ]
        with io.BytesIO() as stream:
            engine_specs_data = pickle.dumps(invariant_engine_specs)
            engine_specs_data = pickletools.optimize(engine_specs_data)
        engine_specs_hash = sha256_hash(engine_specs_data)

@@ -87,12 +104,11 @@
            bytes: packed blob
        """

        settings = copy.deepcopy(compilation_settings)
        settings.torch_executed_ops = {
-            f"torch.ops.{op.__str__()}"
-            for op in settings.torch_executed_ops
+            f"torch.ops.{op.__str__()}" for op in settings.torch_executed_ops
        }

        return pickle.dumps(
            {
                "serialized_engine": bytes(serialized_engine),
@@ -122,11 +138,13 @@
            unpacked["input_specs"],
            unpacked["compilation_settings"],
            unpacked["weight_name_map"],
        )

-    def insert(self, hash: str, entry: UnpackedCacheHit, *args: Any, **kwargs: Any) -> None:
+    def insert(
+        self, hash: str, entry: UnpackedCacheHit, *args: Any, **kwargs: Any
+    ) -> None:
        """
        Insert a cache entry into the engine cache.

        Args:
            hash (str): The hash value of the GraphModule.
@@ -137,11 +155,10 @@
        Returns:
            None
        """
        packed_cache_info = BaseEngineCache.pack(*entry)
        return self.save(hash, packed_cache_info, *args, **kwargs)
-

    def check(self, hash: str, *args: Any, **kwargs: Any) -> Optional[UnpackedCacheHit]:
        """
        Check if a cache entry exists for the given hash.

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py	2024-09-11 04:38:03.076285+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py	2024-09-11 04:38:22.587202+00:00
@@ -531,20 +531,35 @@
        if self.engine_cache is not None:
            if (
                self.compilation_settings.cache_built_engines
                or self.compilation_settings.reuse_cached_engines
            ):
-                hash_val = self.engine_cache.get_hash(self.module, self.input_specs, self.compilation_settings)
+                hash_val = self.engine_cache.get_hash(
+                    self.module, self.input_specs, self.compilation_settings
+                )

            if self.compilation_settings.reuse_cached_engines:
                # query the cached TRT engine
                cached_data = self.engine_cache.check(hash_val)
-                if cached_data is not None: # hit the cache
-                    (serialized_engine, self._input_names, self._output_names, engine_input_specs, engine_compilation_settings, self.weight_name_map) = cached_data
-
-                    setting_compatiblity, incompattible_settings = settings_are_compatible(self.compilation_settings, engine_compilation_settings)
-                    assert setting_compatiblity, f"Attempted to refit a prebuilt engine with incompatible settings: {incompattible_settings}, (old_settings: {engine_compilation_settings}, new_settings: {self.compilation_settings})"
+                if cached_data is not None:  # hit the cache
+                    (
+                        serialized_engine,
+                        self._input_names,
+                        self._output_names,
+                        engine_input_specs,
+                        engine_compilation_settings,
+                        self.weight_name_map,
+                    ) = cached_data
+
+                    setting_compatiblity, incompattible_settings = (
+                        settings_are_compatible(
+                            self.compilation_settings, engine_compilation_settings
+                        )
+                    )
+                    assert (
+                        setting_compatiblity
+                    ), f"Attempted to refit a prebuilt engine with incompatible settings: {incompattible_settings}, (old_settings: {engine_compilation_settings}, new_settings: {self.compilation_settings})"

                    _LOGGER.info(
                        "Found the cached engine that corresponds to this graph. It is directly loaded."
                    )

@@ -609,18 +624,21 @@
        )
        if (
            self.engine_cache is not None
            and self.compilation_settings.cache_built_engines
        ):
-            self.engine_cache.insert(hash_val, (
-                serialized_engine,
-                self._input_names,
-                self._output_names,
-                self.input_specs,
-                self.compilation_settings,
-                self.weight_name_map,
-            ))
+            self.engine_cache.insert(
+                hash_val,
+                (
+                    serialized_engine,
+                    self._input_names,
+                    self._output_names,
+                    self.input_specs,
+                    self.compilation_settings,
+                    self.weight_name_map,
+                ),
+            )

        with io.BytesIO() as engine_bytes:
            engine_bytes.write(serialized_engine)
            engine_str = engine_bytes.getvalue()

--- /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_engine_cache.py	2024-09-11 04:38:03.108285+00:00
+++ /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_engine_cache.py	2024-09-11 04:38:26.801121+00:00
@@ -16,11 +16,10 @@
from torch_tensorrt.dynamo.utils import COSINE_THRESHOLD, cosine_similarity

assertions = unittest.TestCase()


-
class MyEngineCache(BaseEngineCache):
    def __init__(
        self,
        engine_cache_dir: str,
    ) -> None:
@@ -55,111 +54,125 @@
                blob = f.read()
            self.hashes[hash] += 1
            return blob
        return None

+
class TestHashFunction(TestCase):

    def test_reexport_is_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings2 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertEqual(hash1, hash2)
-
-

    def test_input_shape_change_is_not_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 300, 300), opt_shape=(100, 3, 300, 300), max_shape=(200, 3, 300, 300)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 300, 300),
+                opt_shape=(100, 3, 300, 300),
+                max_shape=(200, 3, 300, 300),
+            ),
+        )
        settings2 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertNotEqual(hash1, hash2)
-

    def test_engine_settings_is_not_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
            make_refittable=True,
            cache_built_engines=True,
            reuse_cached_engines=True,
-            enabled_precisions={torch.float32}
+            enabled_precisions={torch.float32},
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 300, 300), opt_shape=(100, 3, 300, 300), max_shape=(200, 3, 300, 300)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 300, 300),
+                opt_shape=(100, 3, 300, 300),
+                max_shape=(200, 3, 300, 300),
+            ),
+        )
        settings2 = CompilationSettings(
            make_refittable=True,
            cache_built_engines=True,
            reuse_cached_engines=True,
-            enabled_precisions={torch.float32, torch.float16}
+            enabled_precisions={torch.float32, torch.float16},
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertNotEqual(hash1, hash2)

@@ -207,11 +220,11 @@
                debug=False,
                min_block_size=1,
                make_refittable=True,
                cache_built_engines=cache_built_engines,
                reuse_cached_engines=reuse_cached_engines,
-                engine_cache_dir=engine_cache_dir
+                engine_cache_dir=engine_cache_dir,
            )
            end.record()
            torch.cuda.synchronize()
            torch._dynamo.reset()
            times.append(start.elapsed_time(end))
@@ -288,12 +301,17 @@
        assertions.assertTrue(
            cos_sim > COSINE_THRESHOLD,
            msg=f"results[1] doesn't match with results[2]. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
        )

-        [assertions.assertTrue(count == 1, f"cache was not hit exactly once for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
-
+        [
+            assertions.assertTrue(
+                count == 1,
+                f"cache was not hit exactly once for entry ({h}, hit: {count})",
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    def test_dynamo_compile_change_input_shape(self):
        """Runs compilation 3 times, the cache should miss each time"""
        model = models.resnet18(pretrained=True).eval().to("cuda")
        # Mark the dim0 of inputs as dynamic
@@ -303,11 +321,11 @@
            shutil.rmtree(engine_cache_dir)

        custom_engine_cache = MyEngineCache(engine_cache_dir)

        for i in range(3):
-            inputs = (torch.rand((4*(i + 1), 3, 224, 224)).to("cuda"),)
+            inputs = (torch.rand((4 * (i + 1), 3, 224, 224)).to("cuda"),)
            trt_gm = torch_trt.dynamo.compile(
                torch.export.export(model, args=inputs),
                inputs=inputs,
                use_python_runtime=False,
                enabled_precisions={torch.float},
@@ -316,11 +334,16 @@
                make_refittable=True,
                cache_built_engines=True,
                reuse_cached_engines=True,
            )

-        [assertions.assertTrue(count == 0, f"Unintended cache hit for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
+        [
+            assertions.assertTrue(
+                count == 0, f"Unintended cache hit for entry ({h}, hit: {count})"
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    @pytest.mark.xfail
    def test_torch_compile_with_default_disk_engine_cache(self):
        # Custom Engine Cache
        model = models.resnet18(pretrained=True).eval().to("cuda")
@@ -360,11 +383,11 @@
                    "make_refittable": True,
                    "cache_built_engines": cache_built_engines,
                    "reuse_cached_engines": reuse_cached_engines,
                    "engine_cache_dir": engine_cache_dir,
                    "engine_cache_size": 1 << 30,  # 1GB
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )
            results.append(compiled_model(*inputs))  # trigger the compilation
            end.record()
            torch.cuda.synchronize()
@@ -426,11 +449,11 @@
                    "min_block_size": 1,
                    "make_refittable": True,
                    "cache_built_engines": cache_built_engines,
                    "reuse_cached_engines": reuse_cached_engines,
                    "custom_engine_cache": custom_engine_cache,
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )
            results.append(compiled_model(*inputs))  # trigger the compilation
            end.record()
            torch.cuda.synchronize()
@@ -447,13 +470,17 @@
        assertions.assertTrue(
            cos_sim > COSINE_THRESHOLD,
            msg=f"results[1] doesn't match with results[2]. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
        )

-        [assertions.assertTrue(count == 1, f"cache was not hit exactly once for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
-
-
+        [
+            assertions.assertTrue(
+                count == 1,
+                f"cache was not hit exactly once for entry ({h}, hit: {count})",
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    def test_torch_compile_change_input_shape(self):
        # Custom Engine Cache
        model = models.resnet18(pretrained=True).eval().to("cuda")

@@ -475,10 +502,15 @@
                    "min_block_size": 1,
                    "make_refittable": True,
                    "cache_built_engines": True,
                    "reuse_cached_engines": True,
                    "custom_engine_cache": custom_engine_cache,
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )

-        [assertions.assertTrue(count == 0, f"Unintended cache hit for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
+        [
+            assertions.assertTrue(
+                count == 0, f"Unintended cache hit for entry ({h}, hit: {count})"
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]
--- /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_models_export.py	2024-09-11 04:38:03.108285+00:00
+++ /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_models_export.py	2024-09-11 04:38:26.804639+00:00
@@ -196,11 +196,12 @@
@unittest.skipIf(
    torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
    "FP8 compilation in Torch-TRT is not supported on cards older than Hopper",
)
@unittest.skipIf(
-    not importlib.util.find_spec("modelopt"), reason="ModelOpt is necessary to run this test"
+    not importlib.util.find_spec("modelopt"),
+    reason="ModelOpt is necessary to run this test",
)
@pytest.mark.unit
def test_base_fp8(ir):
    import modelopt

@@ -244,12 +245,14 @@
                reuse_cached_engines=False,
            )
            outputs_trt = trt_model(input_tensor)
            assert torch.allclose(output_pyt, outputs_trt, rtol=1e-3, atol=1e-2)

+
@unittest.skipIf(
-    not importlib.util.find_spec("modelopt") or Version(importlib.metadata.version("modelopt")) < Version("0.16.1"),
+    not importlib.util.find_spec("modelopt")
+    or Version(importlib.metadata.version("modelopt")) < Version("0.16.1"),
    "modelopt 0.16.1 or later is required Int8 quantization is supported in modelopt since 0.16.1 or later",
)
@pytest.mark.unit
def test_base_int8(ir):
    import modelopt

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_settings.py	2024-09-11 04:38:03.025108+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_settings.py	2024-09-11 04:38:26.592145+00:00
@@ -112,28 +112,31 @@
    lazy_engine_init: bool = LAZY_ENGINE_INIT
    cache_built_engines: bool = CACHE_BUILT_ENGINES
    reuse_cached_engines: bool = REUSE_CACHED_ENGINES


-_SETTINGS_TO_BE_ENGINE_INVARIANT =(
+_SETTINGS_TO_BE_ENGINE_INVARIANT = (
    "enabled_precisions",
    "max_aux_streams",
    "version_compatible",
    "optimization_level",
    "disable_tf32",
    "sparse_weights",
    "make_refittable",
    "engine_capability",
-    "hardware_compatible",)
+    "hardware_compatible",
+)


-def settings_are_compatible(set_a: CompilationSettings, set_b: CompilationSettings) -> Tuple[bool, Set[str]]:
+def settings_are_compatible(
+    set_a: CompilationSettings, set_b: CompilationSettings
+) -> Tuple[bool, Set[str]]:
    incompatible_settings: Set[str] = set()

    for field in _SETTINGS_TO_BE_ENGINE_INVARIANT:
-       if getattr(set_a, field) != getattr(set_b, field):
-           incompatible_settings.add(field)
+        if getattr(set_a, field) != getattr(set_b, field):
+            incompatible_settings.add(field)

    if len(incompatible_settings) == 0:
        return True, set()
    else:
        return False, incompatible_settings
--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_engine_cache.py	2024-09-11 04:38:03.025108+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_engine_cache.py	2024-09-11 04:38:26.643775+00:00
@@ -12,16 +12,27 @@

from sympy.polys.matrices.dense import Sequence
import torch
from torch._inductor.codecache import FxGraphCachePickler, sha256_hash
from torch.fx.experimental.proxy_tensor import unset_fake_temporarily
-from torch_tensorrt.dynamo._settings import CompilationSettings, _SETTINGS_TO_BE_ENGINE_INVARIANT
+from torch_tensorrt.dynamo._settings import (
+    CompilationSettings,
+    _SETTINGS_TO_BE_ENGINE_INVARIANT,
+)
from torch_tensorrt._Input import Input

_LOGGER: logging.Logger = logging.getLogger(__name__)

-UnpackedCacheHit = Tuple[bytes, List[str], List[str], Tuple[Input], CompilationSettings, Optional[Dict[Any, Any]]]
+UnpackedCacheHit = Tuple[
+    bytes,
+    List[str],
+    List[str],
+    Tuple[Input],
+    CompilationSettings,
+    Optional[Dict[Any, Any]],
+]
+

class BaseEngineCache(ABC):

    @abstractmethod
    def __init__(
@@ -30,11 +41,15 @@
        **kwargs: Any,
    ) -> None:
        pass

    @staticmethod
-    def get_hash(gm: torch.fx.GraphModule, input_specs: Sequence[Input], settings: CompilationSettings) -> str:
+    def get_hash(
+        gm: torch.fx.GraphModule,
+        input_specs: Sequence[Input],
+        settings: CompilationSettings,
+    ) -> str:
        """Get the hash value of the GraphModule

        Args:
            gm (torch.fx.GraphModule): GraphModule to hash

@@ -53,11 +68,13 @@
        with io.BytesIO() as stream:
            input_specs_data = pickle.dumps(input_spec_strs)
            input_specs_data = pickletools.optimize(input_specs_data)
        input_specs_hash = sha256_hash(input_specs_data)

-        invariant_engine_specs = [str(getattr(settings, field)) for field in _SETTINGS_TO_BE_ENGINE_INVARIANT]
+        invariant_engine_specs = [
+            str(getattr(settings, field)) for field in _SETTINGS_TO_BE_ENGINE_INVARIANT
+        ]
        with io.BytesIO() as stream:
            engine_specs_data = pickle.dumps(invariant_engine_specs)
            engine_specs_data = pickletools.optimize(engine_specs_data)
        engine_specs_hash = sha256_hash(engine_specs_data)

@@ -87,12 +104,11 @@
            bytes: packed blob
        """

        settings = copy.deepcopy(compilation_settings)
        settings.torch_executed_ops = {
-            f"torch.ops.{op.__str__()}"
-            for op in settings.torch_executed_ops
+            f"torch.ops.{op.__str__()}" for op in settings.torch_executed_ops
        }

        return pickle.dumps(
            {
                "serialized_engine": bytes(serialized_engine),
@@ -122,11 +138,13 @@
            unpacked["input_specs"],
            unpacked["compilation_settings"],
            unpacked["weight_name_map"],
        )

-    def insert(self, hash: str, entry: UnpackedCacheHit, *args: Any, **kwargs: Any) -> None:
+    def insert(
+        self, hash: str, entry: UnpackedCacheHit, *args: Any, **kwargs: Any
+    ) -> None:
        """
        Insert a cache entry into the engine cache.

        Args:
            hash (str): The hash value of the GraphModule.
@@ -137,11 +155,10 @@
        Returns:
            None
        """
        packed_cache_info = BaseEngineCache.pack(*entry)
        return self.save(hash, packed_cache_info, *args, **kwargs)
-

    def check(self, hash: str, *args: Any, **kwargs: Any) -> Optional[UnpackedCacheHit]:
        """
        Check if a cache entry exists for the given hash.

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py	2024-09-11 04:38:03.025108+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py	2024-09-11 04:38:27.224048+00:00
@@ -531,20 +531,35 @@
        if self.engine_cache is not None:
            if (
                self.compilation_settings.cache_built_engines
                or self.compilation_settings.reuse_cached_engines
            ):
-                hash_val = self.engine_cache.get_hash(self.module, self.input_specs, self.compilation_settings)
+                hash_val = self.engine_cache.get_hash(
+                    self.module, self.input_specs, self.compilation_settings
+                )

            if self.compilation_settings.reuse_cached_engines:
                # query the cached TRT engine
                cached_data = self.engine_cache.check(hash_val)
-                if cached_data is not None: # hit the cache
-                    (serialized_engine, self._input_names, self._output_names, engine_input_specs, engine_compilation_settings, self.weight_name_map) = cached_data
-
-                    setting_compatiblity, incompattible_settings = settings_are_compatible(self.compilation_settings, engine_compilation_settings)
-                    assert setting_compatiblity, f"Attempted to refit a prebuilt engine with incompatible settings: {incompattible_settings}, (old_settings: {engine_compilation_settings}, new_settings: {self.compilation_settings})"
+                if cached_data is not None:  # hit the cache
+                    (
+                        serialized_engine,
+                        self._input_names,
+                        self._output_names,
+                        engine_input_specs,
+                        engine_compilation_settings,
+                        self.weight_name_map,
+                    ) = cached_data
+
+                    setting_compatiblity, incompattible_settings = (
+                        settings_are_compatible(
+                            self.compilation_settings, engine_compilation_settings
+                        )
+                    )
+                    assert (
+                        setting_compatiblity
+                    ), f"Attempted to refit a prebuilt engine with incompatible settings: {incompattible_settings}, (old_settings: {engine_compilation_settings}, new_settings: {self.compilation_settings})"

                    _LOGGER.info(
                        "Found the cached engine that corresponds to this graph. It is directly loaded."
                    )

@@ -609,18 +624,21 @@
        )
        if (
            self.engine_cache is not None
            and self.compilation_settings.cache_built_engines
        ):
-            self.engine_cache.insert(hash_val, (
-                serialized_engine,
-                self._input_names,
-                self._output_names,
-                self.input_specs,
-                self.compilation_settings,
-                self.weight_name_map,
-            ))
+            self.engine_cache.insert(
+                hash_val,
+                (
+                    serialized_engine,
+                    self._input_names,
+                    self._output_names,
+                    self.input_specs,
+                    self.compilation_settings,
+                    self.weight_name_map,
+                ),
+            )

        with io.BytesIO() as engine_bytes:
            engine_bytes.write(serialized_engine)
            engine_str = engine_bytes.getvalue()

--- /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_engine_cache.py	2024-09-11 04:38:03.053108+00:00
+++ /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_engine_cache.py	2024-09-11 04:38:31.558325+00:00
@@ -16,11 +16,10 @@
from torch_tensorrt.dynamo.utils import COSINE_THRESHOLD, cosine_similarity

assertions = unittest.TestCase()


-
class MyEngineCache(BaseEngineCache):
    def __init__(
        self,
        engine_cache_dir: str,
    ) -> None:
@@ -55,111 +54,125 @@
                blob = f.read()
            self.hashes[hash] += 1
            return blob
        return None

+
class TestHashFunction(TestCase):

    def test_reexport_is_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings2 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertEqual(hash1, hash2)
-
-

    def test_input_shape_change_is_not_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 300, 300), opt_shape=(100, 3, 300, 300), max_shape=(200, 3, 300, 300)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 300, 300),
+                opt_shape=(100, 3, 300, 300),
+                max_shape=(200, 3, 300, 300),
+            ),
+        )
        settings2 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertNotEqual(hash1, hash2)
-

    def test_engine_settings_is_not_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
            make_refittable=True,
            cache_built_engines=True,
            reuse_cached_engines=True,
-            enabled_precisions={torch.float32}
+            enabled_precisions={torch.float32},
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 300, 300), opt_shape=(100, 3, 300, 300), max_shape=(200, 3, 300, 300)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 300, 300),
+                opt_shape=(100, 3, 300, 300),
+                max_shape=(200, 3, 300, 300),
+            ),
+        )
        settings2 = CompilationSettings(
            make_refittable=True,
            cache_built_engines=True,
            reuse_cached_engines=True,
-            enabled_precisions={torch.float32, torch.float16}
+            enabled_precisions={torch.float32, torch.float16},
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertNotEqual(hash1, hash2)

@@ -207,11 +220,11 @@
                debug=False,
                min_block_size=1,
                make_refittable=True,
                cache_built_engines=cache_built_engines,
                reuse_cached_engines=reuse_cached_engines,
-                engine_cache_dir=engine_cache_dir
+                engine_cache_dir=engine_cache_dir,
            )
            end.record()
            torch.cuda.synchronize()
            torch._dynamo.reset()
            times.append(start.elapsed_time(end))
@@ -288,12 +301,17 @@
        assertions.assertTrue(
            cos_sim > COSINE_THRESHOLD,
            msg=f"results[1] doesn't match with results[2]. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
        )

-        [assertions.assertTrue(count == 1, f"cache was not hit exactly once for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
-
+        [
+            assertions.assertTrue(
+                count == 1,
+                f"cache was not hit exactly once for entry ({h}, hit: {count})",
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    def test_dynamo_compile_change_input_shape(self):
        """Runs compilation 3 times, the cache should miss each time"""
        model = models.resnet18(pretrained=True).eval().to("cuda")
        # Mark the dim0 of inputs as dynamic
@@ -303,11 +321,11 @@
            shutil.rmtree(engine_cache_dir)

        custom_engine_cache = MyEngineCache(engine_cache_dir)

        for i in range(3):
-            inputs = (torch.rand((4*(i + 1), 3, 224, 224)).to("cuda"),)
+            inputs = (torch.rand((4 * (i + 1), 3, 224, 224)).to("cuda"),)
            trt_gm = torch_trt.dynamo.compile(
                torch.export.export(model, args=inputs),
                inputs=inputs,
                use_python_runtime=False,
                enabled_precisions={torch.float},
@@ -316,11 +334,16 @@
                make_refittable=True,
                cache_built_engines=True,
                reuse_cached_engines=True,
            )

-        [assertions.assertTrue(count == 0, f"Unintended cache hit for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
+        [
+            assertions.assertTrue(
+                count == 0, f"Unintended cache hit for entry ({h}, hit: {count})"
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    @pytest.mark.xfail
    def test_torch_compile_with_default_disk_engine_cache(self):
        # Custom Engine Cache
        model = models.resnet18(pretrained=True).eval().to("cuda")
@@ -360,11 +383,11 @@
                    "make_refittable": True,
                    "cache_built_engines": cache_built_engines,
                    "reuse_cached_engines": reuse_cached_engines,
                    "engine_cache_dir": engine_cache_dir,
                    "engine_cache_size": 1 << 30,  # 1GB
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )
            results.append(compiled_model(*inputs))  # trigger the compilation
            end.record()
            torch.cuda.synchronize()
@@ -426,11 +449,11 @@
                    "min_block_size": 1,
                    "make_refittable": True,
                    "cache_built_engines": cache_built_engines,
                    "reuse_cached_engines": reuse_cached_engines,
                    "custom_engine_cache": custom_engine_cache,
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )
            results.append(compiled_model(*inputs))  # trigger the compilation
            end.record()
            torch.cuda.synchronize()
@@ -447,13 +470,17 @@
        assertions.assertTrue(
            cos_sim > COSINE_THRESHOLD,
            msg=f"results[1] doesn't match with results[2]. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
        )

-        [assertions.assertTrue(count == 1, f"cache was not hit exactly once for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
-
-
+        [
+            assertions.assertTrue(
+                count == 1,
+                f"cache was not hit exactly once for entry ({h}, hit: {count})",
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    def test_torch_compile_change_input_shape(self):
        # Custom Engine Cache
        model = models.resnet18(pretrained=True).eval().to("cuda")

@@ -475,10 +502,15 @@
                    "min_block_size": 1,
                    "make_refittable": True,
                    "cache_built_engines": True,
                    "reuse_cached_engines": True,
                    "custom_engine_cache": custom_engine_cache,
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )

-        [assertions.assertTrue(count == 0, f"Unintended cache hit for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
+        [
+            assertions.assertTrue(
+                count == 0, f"Unintended cache hit for entry ({h}, hit: {count})"
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]
--- /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_models_export.py	2024-09-11 04:38:03.057108+00:00
+++ /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_models_export.py	2024-09-11 04:38:31.564254+00:00
@@ -196,11 +196,12 @@
@unittest.skipIf(
    torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
    "FP8 compilation in Torch-TRT is not supported on cards older than Hopper",
)
@unittest.skipIf(
-    not importlib.util.find_spec("modelopt"), reason="ModelOpt is necessary to run this test"
+    not importlib.util.find_spec("modelopt"),
+    reason="ModelOpt is necessary to run this test",
)
@pytest.mark.unit
def test_base_fp8(ir):
    import modelopt

@@ -244,12 +245,14 @@
                reuse_cached_engines=False,
            )
            outputs_trt = trt_model(input_tensor)
            assert torch.allclose(output_pyt, outputs_trt, rtol=1e-3, atol=1e-2)

+
@unittest.skipIf(
-    not importlib.util.find_spec("modelopt") or Version(importlib.metadata.version("modelopt")) < Version("0.16.1"),
+    not importlib.util.find_spec("modelopt")
+    or Version(importlib.metadata.version("modelopt")) < Version("0.16.1"),
    "modelopt 0.16.1 or later is required Int8 quantization is supported in modelopt since 0.16.1 or later",
)
@pytest.mark.unit
def test_base_int8(ir):
    import modelopt

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_settings.py	2024-09-11 04:38:04.275319+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_settings.py	2024-09-11 04:38:27.851601+00:00
@@ -112,28 +112,31 @@
    lazy_engine_init: bool = LAZY_ENGINE_INIT
    cache_built_engines: bool = CACHE_BUILT_ENGINES
    reuse_cached_engines: bool = REUSE_CACHED_ENGINES


-_SETTINGS_TO_BE_ENGINE_INVARIANT =(
+_SETTINGS_TO_BE_ENGINE_INVARIANT = (
    "enabled_precisions",
    "max_aux_streams",
    "version_compatible",
    "optimization_level",
    "disable_tf32",
    "sparse_weights",
    "make_refittable",
    "engine_capability",
-    "hardware_compatible",)
+    "hardware_compatible",
+)


-def settings_are_compatible(set_a: CompilationSettings, set_b: CompilationSettings) -> Tuple[bool, Set[str]]:
+def settings_are_compatible(
+    set_a: CompilationSettings, set_b: CompilationSettings
+) -> Tuple[bool, Set[str]]:
    incompatible_settings: Set[str] = set()

    for field in _SETTINGS_TO_BE_ENGINE_INVARIANT:
-       if getattr(set_a, field) != getattr(set_b, field):
-           incompatible_settings.add(field)
+        if getattr(set_a, field) != getattr(set_b, field):
+            incompatible_settings.add(field)

    if len(incompatible_settings) == 0:
        return True, set()
    else:
        return False, incompatible_settings
--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_engine_cache.py	2024-09-11 04:38:04.275319+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_engine_cache.py	2024-09-11 04:38:27.896330+00:00
@@ -12,16 +12,27 @@

from sympy.polys.matrices.dense import Sequence
import torch
from torch._inductor.codecache import FxGraphCachePickler, sha256_hash
from torch.fx.experimental.proxy_tensor import unset_fake_temporarily
-from torch_tensorrt.dynamo._settings import CompilationSettings, _SETTINGS_TO_BE_ENGINE_INVARIANT
+from torch_tensorrt.dynamo._settings import (
+    CompilationSettings,
+    _SETTINGS_TO_BE_ENGINE_INVARIANT,
+)
from torch_tensorrt._Input import Input

_LOGGER: logging.Logger = logging.getLogger(__name__)

-UnpackedCacheHit = Tuple[bytes, List[str], List[str], Tuple[Input], CompilationSettings, Optional[Dict[Any, Any]]]
+UnpackedCacheHit = Tuple[
+    bytes,
+    List[str],
+    List[str],
+    Tuple[Input],
+    CompilationSettings,
+    Optional[Dict[Any, Any]],
+]
+

class BaseEngineCache(ABC):

    @abstractmethod
    def __init__(
@@ -30,11 +41,15 @@
        **kwargs: Any,
    ) -> None:
        pass

    @staticmethod
-    def get_hash(gm: torch.fx.GraphModule, input_specs: Sequence[Input], settings: CompilationSettings) -> str:
+    def get_hash(
+        gm: torch.fx.GraphModule,
+        input_specs: Sequence[Input],
+        settings: CompilationSettings,
+    ) -> str:
        """Get the hash value of the GraphModule

        Args:
            gm (torch.fx.GraphModule): GraphModule to hash

@@ -53,11 +68,13 @@
        with io.BytesIO() as stream:
            input_specs_data = pickle.dumps(input_spec_strs)
            input_specs_data = pickletools.optimize(input_specs_data)
        input_specs_hash = sha256_hash(input_specs_data)

-        invariant_engine_specs = [str(getattr(settings, field)) for field in _SETTINGS_TO_BE_ENGINE_INVARIANT]
+        invariant_engine_specs = [
+            str(getattr(settings, field)) for field in _SETTINGS_TO_BE_ENGINE_INVARIANT
+        ]
        with io.BytesIO() as stream:
            engine_specs_data = pickle.dumps(invariant_engine_specs)
            engine_specs_data = pickletools.optimize(engine_specs_data)
        engine_specs_hash = sha256_hash(engine_specs_data)

@@ -87,12 +104,11 @@
            bytes: packed blob
        """

        settings = copy.deepcopy(compilation_settings)
        settings.torch_executed_ops = {
-            f"torch.ops.{op.__str__()}"
-            for op in settings.torch_executed_ops
+            f"torch.ops.{op.__str__()}" for op in settings.torch_executed_ops
        }

        return pickle.dumps(
            {
                "serialized_engine": bytes(serialized_engine),
@@ -122,11 +138,13 @@
            unpacked["input_specs"],
            unpacked["compilation_settings"],
            unpacked["weight_name_map"],
        )

-    def insert(self, hash: str, entry: UnpackedCacheHit, *args: Any, **kwargs: Any) -> None:
+    def insert(
+        self, hash: str, entry: UnpackedCacheHit, *args: Any, **kwargs: Any
+    ) -> None:
        """
        Insert a cache entry into the engine cache.

        Args:
            hash (str): The hash value of the GraphModule.
@@ -137,11 +155,10 @@
        Returns:
            None
        """
        packed_cache_info = BaseEngineCache.pack(*entry)
        return self.save(hash, packed_cache_info, *args, **kwargs)
-

    def check(self, hash: str, *args: Any, **kwargs: Any) -> Optional[UnpackedCacheHit]:
        """
        Check if a cache entry exists for the given hash.

--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py	2024-09-11 04:38:04.275319+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/conversion/_TRTInterpreter.py	2024-09-11 04:38:28.499150+00:00
@@ -531,20 +531,35 @@
        if self.engine_cache is not None:
            if (
                self.compilation_settings.cache_built_engines
                or self.compilation_settings.reuse_cached_engines
            ):
-                hash_val = self.engine_cache.get_hash(self.module, self.input_specs, self.compilation_settings)
+                hash_val = self.engine_cache.get_hash(
+                    self.module, self.input_specs, self.compilation_settings
+                )

            if self.compilation_settings.reuse_cached_engines:
                # query the cached TRT engine
                cached_data = self.engine_cache.check(hash_val)
-                if cached_data is not None: # hit the cache
-                    (serialized_engine, self._input_names, self._output_names, engine_input_specs, engine_compilation_settings, self.weight_name_map) = cached_data
-
-                    setting_compatiblity, incompattible_settings = settings_are_compatible(self.compilation_settings, engine_compilation_settings)
-                    assert setting_compatiblity, f"Attempted to refit a prebuilt engine with incompatible settings: {incompattible_settings}, (old_settings: {engine_compilation_settings}, new_settings: {self.compilation_settings})"
+                if cached_data is not None:  # hit the cache
+                    (
+                        serialized_engine,
+                        self._input_names,
+                        self._output_names,
+                        engine_input_specs,
+                        engine_compilation_settings,
+                        self.weight_name_map,
+                    ) = cached_data
+
+                    setting_compatiblity, incompattible_settings = (
+                        settings_are_compatible(
+                            self.compilation_settings, engine_compilation_settings
+                        )
+                    )
+                    assert (
+                        setting_compatiblity
+                    ), f"Attempted to refit a prebuilt engine with incompatible settings: {incompattible_settings}, (old_settings: {engine_compilation_settings}, new_settings: {self.compilation_settings})"

                    _LOGGER.info(
                        "Found the cached engine that corresponds to this graph. It is directly loaded."
                    )

@@ -609,18 +624,21 @@
        )
        if (
            self.engine_cache is not None
            and self.compilation_settings.cache_built_engines
        ):
-            self.engine_cache.insert(hash_val, (
-                serialized_engine,
-                self._input_names,
-                self._output_names,
-                self.input_specs,
-                self.compilation_settings,
-                self.weight_name_map,
-            ))
+            self.engine_cache.insert(
+                hash_val,
+                (
+                    serialized_engine,
+                    self._input_names,
+                    self._output_names,
+                    self.input_specs,
+                    self.compilation_settings,
+                    self.weight_name_map,
+                ),
+            )

        with io.BytesIO() as engine_bytes:
            engine_bytes.write(serialized_engine)
            engine_str = engine_bytes.getvalue()

--- /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_models_export.py	2024-09-11 04:38:04.303319+00:00
+++ /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_models_export.py	2024-09-11 04:38:32.809570+00:00
@@ -196,11 +196,12 @@
@unittest.skipIf(
    torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
    "FP8 compilation in Torch-TRT is not supported on cards older than Hopper",
)
@unittest.skipIf(
-    not importlib.util.find_spec("modelopt"), reason="ModelOpt is necessary to run this test"
+    not importlib.util.find_spec("modelopt"),
+    reason="ModelOpt is necessary to run this test",
)
@pytest.mark.unit
def test_base_fp8(ir):
    import modelopt

@@ -244,12 +245,14 @@
                reuse_cached_engines=False,
            )
            outputs_trt = trt_model(input_tensor)
            assert torch.allclose(output_pyt, outputs_trt, rtol=1e-3, atol=1e-2)

+
@unittest.skipIf(
-    not importlib.util.find_spec("modelopt") or Version(importlib.metadata.version("modelopt")) < Version("0.16.1"),
+    not importlib.util.find_spec("modelopt")
+    or Version(importlib.metadata.version("modelopt")) < Version("0.16.1"),
    "modelopt 0.16.1 or later is required Int8 quantization is supported in modelopt since 0.16.1 or later",
)
@pytest.mark.unit
def test_base_int8(ir):
    import modelopt
--- /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_engine_cache.py	2024-09-11 04:38:04.303319+00:00
+++ /home/runner/work/TensorRT/TensorRT/tests/py/dynamo/models/test_engine_cache.py	2024-09-11 04:38:32.811120+00:00
@@ -16,11 +16,10 @@
from torch_tensorrt.dynamo.utils import COSINE_THRESHOLD, cosine_similarity

assertions = unittest.TestCase()


-
class MyEngineCache(BaseEngineCache):
    def __init__(
        self,
        engine_cache_dir: str,
    ) -> None:
@@ -55,111 +54,125 @@
                blob = f.read()
            self.hashes[hash] += 1
            return blob
        return None

+
class TestHashFunction(TestCase):

    def test_reexport_is_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings2 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertEqual(hash1, hash2)
-
-

    def test_input_shape_change_is_not_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 300, 300), opt_shape=(100, 3, 300, 300), max_shape=(200, 3, 300, 300)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 300, 300),
+                opt_shape=(100, 3, 300, 300),
+                max_shape=(200, 3, 300, 300),
+            ),
+        )
        settings2 = CompilationSettings(
-            make_refittable=True,
-            cache_built_engines=True,
-            reuse_cached_engines=True
+            make_refittable=True, cache_built_engines=True, reuse_cached_engines=True
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertNotEqual(hash1, hash2)
-

    def test_engine_settings_is_not_equal(self):
        pyt_model = models.resnet18(pretrained=True).eval().to("cuda")
        example_inputs = (torch.randn((100, 3, 224, 224)).to("cuda"),)
        batch = torch.export.Dim("batch", min=1, max=200)

        exp_program1 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs1 = (torch_trt.Input(min_shape=(1, 3, 224, 224), opt_shape=(100, 3, 224, 224), max_shape=(200, 3, 224, 224)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs1 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 224, 224),
+                opt_shape=(100, 3, 224, 224),
+                max_shape=(200, 3, 224, 224),
+            ),
+        )
        settings1 = CompilationSettings(
            make_refittable=True,
            cache_built_engines=True,
            reuse_cached_engines=True,
-            enabled_precisions={torch.float32}
+            enabled_precisions={torch.float32},
        )
        hash1 = BaseEngineCache.get_hash(exp_program1.module(), input_specs1, settings1)

        exp_program2 = torch.export.export(
-            pyt_model,
-            args=example_inputs,
-            dynamic_shapes={"x": {0: batch}}
-        )
-        input_specs2 = (torch_trt.Input(min_shape=(1, 3, 300, 300), opt_shape=(100, 3, 300, 300), max_shape=(200, 3, 300, 300)),)
+            pyt_model, args=example_inputs, dynamic_shapes={"x": {0: batch}}
+        )
+        input_specs2 = (
+            torch_trt.Input(
+                min_shape=(1, 3, 300, 300),
+                opt_shape=(100, 3, 300, 300),
+                max_shape=(200, 3, 300, 300),
+            ),
+        )
        settings2 = CompilationSettings(
            make_refittable=True,
            cache_built_engines=True,
            reuse_cached_engines=True,
-            enabled_precisions={torch.float32, torch.float16}
+            enabled_precisions={torch.float32, torch.float16},
        )
        hash2 = BaseEngineCache.get_hash(exp_program2.module(), input_specs2, settings2)

        self.assertNotEqual(hash1, hash2)

@@ -207,11 +220,11 @@
                debug=False,
                min_block_size=1,
                make_refittable=True,
                cache_built_engines=cache_built_engines,
                reuse_cached_engines=reuse_cached_engines,
-                engine_cache_dir=engine_cache_dir
+                engine_cache_dir=engine_cache_dir,
            )
            end.record()
            torch.cuda.synchronize()
            torch._dynamo.reset()
            times.append(start.elapsed_time(end))
@@ -288,12 +301,17 @@
        assertions.assertTrue(
            cos_sim > COSINE_THRESHOLD,
            msg=f"results[1] doesn't match with results[2]. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
        )

-        [assertions.assertTrue(count == 1, f"cache was not hit exactly once for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
-
+        [
+            assertions.assertTrue(
+                count == 1,
+                f"cache was not hit exactly once for entry ({h}, hit: {count})",
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    def test_dynamo_compile_change_input_shape(self):
        """Runs compilation 3 times, the cache should miss each time"""
        model = models.resnet18(pretrained=True).eval().to("cuda")
        # Mark the dim0 of inputs as dynamic
@@ -303,11 +321,11 @@
            shutil.rmtree(engine_cache_dir)

        custom_engine_cache = MyEngineCache(engine_cache_dir)

        for i in range(3):
-            inputs = (torch.rand((4*(i + 1), 3, 224, 224)).to("cuda"),)
+            inputs = (torch.rand((4 * (i + 1), 3, 224, 224)).to("cuda"),)
            trt_gm = torch_trt.dynamo.compile(
                torch.export.export(model, args=inputs),
                inputs=inputs,
                use_python_runtime=False,
                enabled_precisions={torch.float},
@@ -316,11 +334,16 @@
                make_refittable=True,
                cache_built_engines=True,
                reuse_cached_engines=True,
            )

-        [assertions.assertTrue(count == 0, f"Unintended cache hit for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
+        [
+            assertions.assertTrue(
+                count == 0, f"Unintended cache hit for entry ({h}, hit: {count})"
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    @pytest.mark.xfail
    def test_torch_compile_with_default_disk_engine_cache(self):
        # Custom Engine Cache
        model = models.resnet18(pretrained=True).eval().to("cuda")
@@ -360,11 +383,11 @@
                    "make_refittable": True,
                    "cache_built_engines": cache_built_engines,
                    "reuse_cached_engines": reuse_cached_engines,
                    "engine_cache_dir": engine_cache_dir,
                    "engine_cache_size": 1 << 30,  # 1GB
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )
            results.append(compiled_model(*inputs))  # trigger the compilation
            end.record()
            torch.cuda.synchronize()
@@ -426,11 +449,11 @@
                    "min_block_size": 1,
                    "make_refittable": True,
                    "cache_built_engines": cache_built_engines,
                    "reuse_cached_engines": reuse_cached_engines,
                    "custom_engine_cache": custom_engine_cache,
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )
            results.append(compiled_model(*inputs))  # trigger the compilation
            end.record()
            torch.cuda.synchronize()
@@ -447,13 +470,17 @@
        assertions.assertTrue(
            cos_sim > COSINE_THRESHOLD,
            msg=f"results[1] doesn't match with results[2]. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
        )

-        [assertions.assertTrue(count == 1, f"cache was not hit exactly once for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
-
-
+        [
+            assertions.assertTrue(
+                count == 1,
+                f"cache was not hit exactly once for entry ({h}, hit: {count})",
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

    def test_torch_compile_change_input_shape(self):
        # Custom Engine Cache
        model = models.resnet18(pretrained=True).eval().to("cuda")

@@ -475,10 +502,15 @@
                    "min_block_size": 1,
                    "make_refittable": True,
                    "cache_built_engines": True,
                    "reuse_cached_engines": True,
                    "custom_engine_cache": custom_engine_cache,
-                    "torch_executed_ops": {"torch.ops.aten.relu.default"}
+                    "torch_executed_ops": {"torch.ops.aten.relu.default"},
                },
            )

-        [assertions.assertTrue(count == 0, f"Unintended cache hit for entry ({h}, hit: {count})") for h, count in custom_engine_cache.hashes.items()]
+        [
+            assertions.assertTrue(
+                count == 0, f"Unintended cache hit for entry ({h}, hit: {count})"
+            )
+            for h, count in custom_engine_cache.hashes.items()
+        ]

@narendasan narendasan closed this Sep 11, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: api [Python] Issues re: Python API component: conversion Issues re: Conversion stage component: dynamo Issues relating to the `torch.compile` or `torch._dynamo.export` paths component: runtime component: tests Issues re: Tests
Projects
None yet
Development

Successfully merging this pull request may close these issues.

🐛 [Bug] Engine cache does not take shape change into account
2 participants